The Conc. Of Serum Glucose is constant!

Before eating: 5 mM
After eating: 10 mM.

The conc. of glucose is buffered.

WHY?

Brain, CNS & RBC use glucose exclusively as energy source.

Brain consumes ~ 120 gm glucose/day

Glycogen reserves: ~ 190 gm.

During Fasting and extreme exertion (e.g. marathon) the available glucose is rapidly depleted.

So:

Glucose is kept available for energy!

In addition:

Glucose is main precursor of
Amino sugars
Complex polysaccharides
Glycoproteins
Glycolipids
The buffering mechanism

High Glucose

Glycogen \rightleftharpoons Glucose \rightarrow Pyruvate \rightarrow Acetyl CoA \rightarrow Fatty Acids

Low Glucose

Glycogen \rightarrow Glucose \leftarrow non–sugar precursors

(but not fatty acids)

A Problem.

Glycolysis is EXERGONIC!

($\Delta G' \sim -96 \text{ kJ/mole} \; \{-23 \text{ kcal}\}$).

3 Reactions of Glycolysis are irreversible!

<table>
<thead>
<tr>
<th>Reaction</th>
<th>$\Delta G'$ (kJ/mole)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hexokinase</td>
<td>$\ll 0$</td>
</tr>
<tr>
<td>Phosphoglucoisomerase</td>
<td>~ 0</td>
</tr>
<tr>
<td>Phosphofructokinase</td>
<td>$\ll 0$</td>
</tr>
<tr>
<td>Aldolase</td>
<td>~ 0</td>
</tr>
<tr>
<td>Triose P isomerase</td>
<td>~ 0</td>
</tr>
<tr>
<td>Glyceraldehyde-3-P dehydrogenase</td>
<td>~ 0</td>
</tr>
<tr>
<td>Phosphoglycerate kinase</td>
<td>~ 0</td>
</tr>
<tr>
<td>Phosphoglycerate mutase</td>
<td>~ 0</td>
</tr>
<tr>
<td>Enolase</td>
<td>~ 0</td>
</tr>
<tr>
<td>Pyruvate kinase</td>
<td>$\ll 0$</td>
</tr>
</tbody>
</table>

Gluconeogenesis is not Glycolysis in Reverse!
The secret of gluconeogenesis

a) Hexokinase is replaced by Glucose-6-Phosphatase

\[
G + ATP \Rightarrow G6P + ADP
\]
\[
\text{HK}
\]
\[
G6P \Rightarrow G + P
\]
\[
\text{G6Pase}
\]

b) Phosphofructokinase is replaced by Fructose1,6 bisphosphatase

\[
F6P + ATP \Rightarrow F1,6P + ADP
\]
\[
\text{PFK1}
\]
\[
F1,6P \Rightarrow F6P + P
\]
\[
\text{FBPase}
\]

c) Pyruvate kinase is replaced by a complex sequence!

1. Make oxalacetate (by a variety of ways).
2. Convert OAA to PEP (PEPCK (anaplerotic reactions))

These reactions occur mainly in the liver.
MAIN REACTIONS.

Pyruvate \Rightarrow Oxalacetate

$$\text{CH}_3\text{-CO-COOH} + \text{ATP} + \text{CO}_2 \iff \text{COOH-CH}_2\text{-CO-COOH} + \text{ADP} + \text{Pi}$$

Pyruvate carboxylase
(biotin)

Oxalacetate \Rightarrow PEP

$$\text{COOHCH}_2\text{COCOOH} + \text{GTP} \iff \text{CH}_2\text{=OP-COOH} + \text{GDP} + \text{Pi} + \text{CO}_2$$

PEPCK (Mn; mito or cyto)

Both PC & PEPCK were covered in anaplerotic reactions!
Glycerol \Rightarrow DHAP \Rightarrow Glyceraldehyde-3-P

Consider

$$\text{G} + \text{ATP} \Rightarrow \text{G6P} \Rightarrow \text{G} + \text{P}.$$

A machine for burning ATP-a **futile** cycle.

So…..Enable

- glycolysis
- OR
- gluconeogenesis

but not both.

The control of glucose metabolism.

Organizing Principles

1. Molecules are synthesized by different pathways (tho many shared reactions).

2. Corresponding pathways controlled by 1 (or more) early steps.
3. Synthesis rendered exergonic via excess ATP & NADPH

Three mechanisms.

Allosteric activators/inhibitors

Covalent Modification (phosphorylation).

Protein synthesis.

Allosteric Controls

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>Activated by:</th>
<th>Inhibited by:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hexokinase</td>
<td>------</td>
<td>G6P</td>
</tr>
<tr>
<td>G6Pase</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>PFK-1</td>
<td>AMP, F2,6P</td>
<td>ATP, citrate</td>
</tr>
<tr>
<td>FBPase</td>
<td>------</td>
<td>AMP, F2,6P</td>
</tr>
<tr>
<td>Pyruvate kinase</td>
<td>F1,6P</td>
<td>Alanine, ATP</td>
</tr>
<tr>
<td>Pyruvate carboxylase</td>
<td>acetyl CoA</td>
<td></td>
</tr>
<tr>
<td>PEPCK</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>PFK-2</td>
<td>AMP, F6P</td>
<td>citrate</td>
</tr>
<tr>
<td>FBPase-2</td>
<td>glycerol-3-P</td>
<td>F6P</td>
</tr>
</tbody>
</table>
F2,6P a potent regulator of the interconversion of F6P and F1,6P.

Product of *phosphofructokinase-2*

\[
\text{F6P} + \text{ATP} \Rightarrow \text{F2,6bisP} + \text{ADP}
\]

PFK–2……….An enzyme with 2 activities

Enz: KINASE
Enz-P: PHOSPHATASE

\[
\text{Enz} + \text{ATP} \Leftrightarrow \text{Enz-P} + \text{ADP}
\]

Protein kinase

Low blood sugar ⇒ Glucagon ⇒ cAMP
Enzyme modification caused by Protein Kinase

Specific PKs controlled by cAMP/Insulin

INACTIVE

+ 2 cAMP

ACTIVE

Protein-SerOH + ATP → Protein-SerP + ADP

Enzyme Phosphorylation

Inactivates
Pyruvate Kinase.
PFK-2

Activates
FBPase-2
lactate → pyruvate ← alanine

pyruvate → OAA → PEP

OAA ← malate

malate → PEP

humans, rabbit, pigeon

humans, rat

OAA → PEP